Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

8-(4-Chlorobenzylidene)-4-(4-chlorophenyl)-2-phenyl-5,6,7,8-tetrahydroquinoline

Fangfang Jian* and Xin Zhai

New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: ffj2003@163169.net

Received 17 March 2010; accepted 14 May 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.102; data-to-parameter ratio = 13.6.

In the crystal structure of the title compound, $C_{28}H_{21}Cl_2N$, π - π interactions link pairs of molecules into centrosymmetric dimers with a distance of 3.756 (3) Å between the centroids of the pyridine rings. Weak intermolecular C-H···Cl hydrogen bonds further link these dimers into chains propagating along [101]. The pyridine ring forms dihedral angles of 21.52 (1) and 55.87 (2)°, respectively, with the phenyl ring and the 4chlorophenyl ring.

Related literature

For applications of pyridyl-containing compounds, see: Yan et al. (2007); Barton & Ollis (1979); Katritzky & Marson (1984); Constable et al. (1994); Eryazici et al. (2006).

Experimental

Crystal data C28H21Cl2N

 $M_{\rm w} = 442.36$

Triclinic, P1	
a = 10.0583 (10) Å	
b = 10.6483 (10) Å	
c = 10.8792 (10) Å	
$\alpha = 82.028 \ (2)^{\circ}$	
$\beta = 89.345 (1)^{\circ}$	
$\gamma = 71.335 \ (2)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer 5765 measured reflections 3810 independent reflections 3211 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	280 parameters
$wR(F^2) = 0.102$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
3810 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C20-H20A\cdots Cl1^{i}$	0.93	2.80	3.476 (2)	130
Symmetry code: (i) $r = 1$	v z ⊥ 1			

Symmetry code: (i) x - 1, y, z + 1.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (grant Nos. Y2006B08 & Z2007B01).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2704).

References

- Barton, D. & Ollis, D. (1979). Comprehensive Organic Chemistry, Vol. 4, pp. 468-469. Oxford, New York: Pergamon Press.
- Constable, E. C., Martínez-Máňez, R., Chargill Thompson, A. M. W. & Walker, J. V. (1994). J. Chem. Soc. pp. 1585-1594.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Eryazici, I., Moorefield, C. N., Durmus, S. & Newkome, G. R. (2006). J. Org. Chem. 71, 1009-1014.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Katritzky, A. R. & Marson, C. M. (1984). Angew. Chem. Int. Ed. Engl. 23, 420-429.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yan, C. G., Cai, X. M., Wang, Q. F., Wang, T. Y. & Zheng, M. (2007). Nat. Prop. Liais. Coord. Paris, 5, 945-947.

organic compounds

V = 1092.53 (18) Å³

 $0.23 \times 0.20 \times 0.19 \text{ mm}$

3 standard reflections every 100

intensity decay: none

Mo $K\alpha$ radiation

 $\mu = 0.31 \text{ mm}^{-1}$ T = 295 K

 $R_{\rm int} = 0.014$

reflections

7 - 2

Acta Cryst. (2010). E66, o1423 [doi:10.1107/S1600536810017769]

8-(4-Chlorobenzylidene)-4-(4-chlorophenyl)-2-phenyl-5,6,7,8-tetrahydroquinoline

F. Jian and X. Zhai

Comment

The pyridyl heterocyclic core occurs in many natural products (Barton & Ollis, 1979; Katritzky & Marson, 1984). It also plays an important role in various coordinating ligands (Constable *et al.*, 1994; Eryazici *et al.*, 2006)[°] Recently, the structure of 5,6,7,8-tetrahydroquinoline derivative has been reported (Yan *et al.*, 2007). Herein, we report the crystal structure of the title compound.

In (I) (Fig. 1), the bond lengths and angles are in a good agreement with those reported previously (Yan *et al.*, 2007). Rings N1/C13/C12/C22/C21/C14 (p1), C15-C20 (p2), C23-C28 (p3) and C1-C6 (p4) form the following dihedral angles $- p1/p2 21.52 (1)^{\circ}$, $p1/p3 55.87 (2)^{\circ}$, $p1/p4 33.74 (1)^{\circ}$, $p2/p3 67.85 (1)^{\circ}$, $p2/p4 44.53 (2)^{\circ}$ and $p3/p4 81.57 (1)^{\circ}$.

The crystal packing is stabilized by hydrogen bonds and π - π interactions. π - π interaction link two molecules into centrosymmetric dimer with the distance of 3.756 (3) Å between the centroids of pyridine rings. Weak intermolecular C—H···Cl hydrogen bonds (Table 1) link further these dimers into chains propagated in direction [-101].

Experimental

The title compound was synthesized by reaction of (*Z*)-2,6-dibenzylidenecyclohexanone (0.343 g, 1 mmol),ammonium acetate (3.0 g, 0.039 mol) and *N*-phenacylpyridinium bromide (0.280 g, 1.2 mmol) in refluxing methanol (15 ml) under stirring for 7 h. Single crystals suitable for x-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å and $U_{iso}(H)=1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

8-(4-Chlorobenzylidene)-4-(4-chlorophenyl)-2-phenyl-5,6,7,8-tetrahydroquinoline

Crystal data	
$C_{28}H_{21}Cl_2N$	
$M_r = 442.36$	
Triclinic, PT	
Hall symbol: -P 1	
<i>a</i> = 10.0583 (10) Å	

Z = 2 F(000) = 460 $D_x = 1.345 \text{ Mg m}^{-3}$ Melting point: 446 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 4-14^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 295 KBlock, colorless $0.23 \times 0.20 \times 0.19 \text{ mm}$

Data collection

 $V = 1092.53 (18) \text{ Å}^3$

b = 10.6483 (10) Å

c = 10.8792 (10) Å $\alpha = 82.028 (2)^{\circ}$

 $\beta = 89.345 (1)^{\circ}$ $\gamma = 71.335 (2)^{\circ}$

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.014$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^\circ, \ \theta_{\text{min}} = 1.9^\circ$
graphite	$h = -10 \rightarrow 11$
ω scans	$k = -10 \rightarrow 12$
5765 measured reflections	$l = -12 \rightarrow 12$
3810 independent reflections	3 standard reflections every 100 reflections
3211 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.102$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.049P)^2 + 0.2862P]$ where $P = (F_o^2 + 2F_c^2)/3$
3810 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
280 parameters	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.76136 (6)	-0.12681 (6)	-0.49616 (5)	0.06911 (19)
C12	-0.44155 (6)	0.60618 (5)	0.38242 (6)	0.0742 (2)
N1	0.17509 (14)	-0.06763 (13)	0.09541 (12)	0.0368 (3)
C1	0.45331 (19)	-0.14359 (18)	-0.27005 (16)	0.0451 (4)
H1B	0.3983	-0.1989	-0.2522	0.054*
C2	0.5506 (2)	-0.17024 (19)	-0.36113 (17)	0.0489 (4)
H2A	0.5600	-0.2415	-0.4049	0.059*
C3	0.63328 (18)	-0.09032 (19)	-0.38617 (16)	0.0458 (4)
C4	0.61789 (19)	0.0167 (2)	-0.32375 (17)	0.0499 (5)
H4A	0.6740	0.0710	-0.3420	0.060*
C5	0.51923 (19)	0.04352 (18)	-0.23411 (16)	0.0451 (4)
H5A	0.5089	0.1167	-0.1928	0.054*
C6	0.43443 (17)	-0.03640 (16)	-0.20368 (15)	0.0374 (4)
C7	0.33130 (17)	-0.02208 (16)	-0.10601 (15)	0.0379 (4)
H7A	0.2986	-0.0948	-0.0881	0.045*
C8	0.27524 (16)	0.07649 (16)	-0.03750 (15)	0.0350 (4)
С9	0.30828 (19)	0.20661 (17)	-0.04971 (16)	0.0416 (4)
H9A	0.2820	0.2535	-0.1333	0.050*
H9B	0.4088	0.1863	-0.0380	0.050*
C10	0.23390 (19)	0.29860 (17)	0.04218 (17)	0.0441 (4)
H10A	0.2800	0.2652	0.1235	0.053*
H10B	0.2405	0.3873	0.0166	0.053*
C11	0.08054 (18)	0.30767 (16)	0.05054 (16)	0.0424 (4)
H11A	0.0344	0.3694	0.1073	0.051*
H11B	0.0336	0.3405	-0.0305	0.051*
C12	0.07233 (17)	0.17042 (16)	0.09631 (14)	0.0355 (4)
C13	0.17015 (16)	0.05872 (16)	0.05496 (14)	0.0345 (4)
C14	0.08518 (17)	-0.08920 (16)	0.18078 (15)	0.0369 (4)
C15	0.09818 (18)	-0.23138 (16)	0.22446 (15)	0.0386 (4)
C16	0.2229 (2)	-0.33247 (17)	0.21094 (17)	0.0473 (4)
H16A	0.2978	-0.3108	0.1735	0.057*
C17	0.2370 (2)	-0.46471 (19)	0.25232 (19)	0.0578 (5)
H17A	0.3211	-0.5313	0.2426	0.069*
C18	0.1272 (3)	-0.4986 (2)	0.30786 (19)	0.0610 (6)
H18A	0.1370	-0.5877	0.3361	0.073*
C19	0.0030 (2)	-0.3998 (2)	0.32122 (18)	0.0578 (5)
H19A	-0.0716	-0.4223	0.3585	0.069*
C20	-0.0120 (2)	-0.26712 (18)	0.27962 (16)	0.0469 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H20A	-0.0968	-0.2011	0.2887	0.056*
C21	-0.01285 (18)	0.01573 (17)	0.22810 (15)	0.0399 (4)
H21A	-0.0728	-0.0021	0.2887	0.048*
C22	-0.02151 (17)	0.14700 (16)	0.18517 (15)	0.0369 (4)
C23	-0.12942 (17)	0.25829 (16)	0.23450 (15)	0.0380 (4)
C24	-0.13747 (19)	0.26296 (18)	0.36124 (16)	0.0460 (4)
H24A	-0.0763	0.1944	0.4158	0.055*
C25	-0.2349 (2)	0.3679 (2)	0.40779 (18)	0.0513 (5)
H25A	-0.2389	0.3706	0.4929	0.062*
C26	-0.32574 (19)	0.46814 (18)	0.32692 (18)	0.0467 (4)
C27	-0.32402 (19)	0.46397 (18)	0.20151 (17)	0.0472 (4)
H27A	-0.3884	0.5307	0.1478	0.057*
C28	-0.22516 (19)	0.35909 (18)	0.15609 (16)	0.0444 (4)
H28A	-0.2230	0.3563	0.0710	0.053*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0586 (3)	0.0873 (4)	0.0505 (3)	-0.0087 (3)	0.0250 (2)	-0.0108 (3)
Cl2	0.0743 (4)	0.0533 (3)	0.0875 (4)	-0.0030 (3)	0.0244 (3)	-0.0288 (3)
N1	0.0408 (8)	0.0361 (7)	0.0351 (7)	-0.0139 (6)	0.0084 (6)	-0.0076 (6)
C1	0.0467 (10)	0.0434 (10)	0.0459 (10)	-0.0140 (8)	0.0093 (8)	-0.0106 (8)
C2	0.0527 (11)	0.0490 (11)	0.0418 (10)	-0.0086 (9)	0.0090 (8)	-0.0146 (8)
C3	0.0396 (9)	0.0550 (11)	0.0329 (9)	-0.0034 (8)	0.0076 (7)	-0.0024 (8)
C4	0.0466 (10)	0.0575 (11)	0.0476 (10)	-0.0201 (9)	0.0113 (8)	-0.0067 (9)
C5	0.0487 (10)	0.0481 (10)	0.0433 (10)	-0.0199 (8)	0.0123 (8)	-0.0129 (8)
C6	0.0365 (9)	0.0383 (9)	0.0341 (8)	-0.0079 (7)	0.0044 (7)	-0.0047 (7)
C7	0.0384 (9)	0.0370 (9)	0.0394 (9)	-0.0139 (7)	0.0063 (7)	-0.0058 (7)
C8	0.0359 (8)	0.0346 (8)	0.0340 (8)	-0.0112 (7)	0.0044 (7)	-0.0043 (7)
C9	0.0459 (10)	0.0403 (9)	0.0420 (9)	-0.0179 (8)	0.0111 (8)	-0.0083 (7)
C10	0.0540 (11)	0.0386 (9)	0.0459 (10)	-0.0221 (8)	0.0124 (8)	-0.0107 (8)
C11	0.0495 (10)	0.0340 (9)	0.0435 (10)	-0.0126 (8)	0.0118 (8)	-0.0075 (7)
C12	0.0390 (9)	0.0358 (8)	0.0335 (8)	-0.0138 (7)	0.0046 (7)	-0.0068 (7)
C13	0.0375 (8)	0.0347 (8)	0.0324 (8)	-0.0128 (7)	0.0042 (7)	-0.0061 (7)
C14	0.0412 (9)	0.0366 (9)	0.0341 (8)	-0.0140 (7)	0.0048 (7)	-0.0060 (7)
C15	0.0501 (10)	0.0369 (9)	0.0318 (8)	-0.0172 (8)	0.0051 (7)	-0.0079 (7)
C16	0.0546 (11)	0.0410 (10)	0.0474 (10)	-0.0159 (9)	0.0080 (8)	-0.0092 (8)
C17	0.0697 (13)	0.0384 (10)	0.0611 (12)	-0.0105 (10)	0.0032 (10)	-0.0101 (9)
C18	0.0920 (16)	0.0391 (10)	0.0557 (12)	-0.0284 (11)	-0.0012 (11)	-0.0016 (9)
C19	0.0783 (14)	0.0561 (12)	0.0498 (11)	-0.0386 (11)	0.0104 (10)	-0.0032 (9)
C20	0.0570 (11)	0.0467 (10)	0.0413 (10)	-0.0223 (9)	0.0104 (8)	-0.0075 (8)
C21	0.0427 (9)	0.0415 (9)	0.0376 (9)	-0.0163 (8)	0.0123 (7)	-0.0071 (7)
C22	0.0380 (9)	0.0380 (9)	0.0351 (9)	-0.0116 (7)	0.0053 (7)	-0.0081 (7)
C23	0.0385 (9)	0.0375 (9)	0.0413 (9)	-0.0156 (7)	0.0098 (7)	-0.0089 (7)
C24	0.0453 (10)	0.0474 (10)	0.0414 (10)	-0.0088 (8)	0.0056 (8)	-0.0087 (8)
C25	0.0536 (11)	0.0579 (12)	0.0438 (10)	-0.0153 (9)	0.0106 (9)	-0.0192 (9)
C26	0.0459 (10)	0.0398 (10)	0.0579 (11)	-0.0161 (8)	0.0174 (9)	-0.0149 (8)
C27	0.0452 (10)	0.0391 (10)	0.0522 (11)	-0.0094(8)	0.0067 (8)	0.0004 (8)

C28	0.0490 (10)	0.0446 (10)	0.0387 (9)	-0.0144 (8)	0.0093 (8)	-0.0049 (8)
Geometric paran	neters (Å, °)					
C11 C3		1 7366 (17)	C12	~ 22		1307(2)
C12-C26		1.7367 (17)	C12—	C13		1.397(2) 1.405(2)
N1_C14		1 337 (2)	C12	C21		1 389 (2)
N1-C13		1.337(2) 1 342(2)	C14—	C15		1.509 (2)
C1-C2		1.378(2)	C15—	C20		1 387 (2)
C1—C6		1.395 (2)	C15—	C16		1.389 (2)
C1—H1B		0.9300	C16—	C17		1.380 (3)
C2—C3		1.368 (3)	C16—	H16A		0.9300
C2—H2A		0.9300	C17—	C18		1.376 (3)
C3—C4		1.373 (3)	C17—	H17A		0.9300
C4—C5		1.375 (2)	C18—	C19		1.373 (3)
C4—H4A		0.9300	C18—1	H18A		0.9300
С5—С6		1.393 (2)	C19—	C20		1.383 (3)
C5—H5A		0.9300	C19—1	H19A		0.9300
С6—С7		1.465 (2)	C20—1	H20A		0.9300
С7—С8		1.343 (2)	C21—	C22		1.386 (2)
C7—H7A		0.9300	C21—1	H21A		0.9300
C8—C13		1.489 (2)	C22—	C23		1.487 (2)
С8—С9		1.513 (2)	C23—	C28		1.382 (2)
C9—C10		1.518 (2)	C23—	C24		1.387 (2)
С9—Н9А		0.9700	C24—	C25		1.382 (2)
С9—Н9В		0.9700	C24—]	H24A		0.9300
C10-C11		1.517 (2)	C25—	C26		1.372 (3)
C10—H10A		0.9700	C25—1	H25A		0.9300
C10—H10B		0.9700	C26—	C27		1.371 (3)
C11—C12		1.505 (2)	C27—	C28		1.382 (2)
C11—H11A		0.9700	C27—]	H27A		0.9300
C11—H11B		0.9700	C28—1	H28A		0.9300
C14—N1—C13		118.91 (14)	N1—C	13—С8		116.56 (13)
C2—C1—C6		122.23 (17)	C12—	С13—С8		120.52 (14)
C2—C1—H1B		118.9	N1—C	14—C21		121.64 (15)
C6—C1—H1B		118.9	N1—C	14—C15		116.46 (14)
C3—C2—C1		119.02 (17)	C21—	C14—C15		121.88 (14)
С3—С2—Н2А		120.5	C20—	C15—C16		118.21 (16)
C1—C2—H2A		120.5	C20—	C15—C14		121.62 (16)
C2—C3—C4		120.79 (16)	C16—	C15—C14		120.16 (15)
C2—C3—Cl1		119.54 (14)	C17—	C16—C15		120.80 (18)
C4—C3—Cl1		119.66 (15)	C17—	C16—H16A		119.6
C3—C4—C5		119.74 (18)	C15—	C16—H16A		119.6
C3—C4—H4A		120.1	C18—	C17—C16		120.35 (19)
C5—C4—H4A		120.1	C18—4	C17—H17A		119.8
C4—C5—C6		121.59 (17)	C16—	С17—Н17А		119.8
C4—C5—H5A		119.2	C19—	C18—C17		119.53 (18)
C6—C5—H5A		119.2	C19—	C18—H18A		120.2
C5—C6—C1		116.61 (15)	C17—	C18—H18A		120.2

C5—C6—C7	126.52 (15)	C18—C19—C20	120.41 (19)
C1—C6—C7	116.83 (15)	C18—C19—H19A	119.8
C8—C7—C6	131.97 (16)	C20—C19—H19A	119.8
С8—С7—Н7А	114.0	C19—C20—C15	120.70 (19)
С6—С7—Н7А	114.0	C19—C20—H20A	119.7
C7—C8—C13	117.97 (14)	C15—C20—H20A	119.7
С7—С8—С9	124.69 (14)	C22—C21—C14	120.16 (15)
С13—С8—С9	117.31 (13)	C22—C21—H21A	119.9
C8—C9—C10	113.80 (13)	C14—C21—H21A	119.9
С8—С9—Н9А	108.8	C21—C22—C12	118.56 (15)
С10—С9—Н9А	108.8	C21—C22—C23	119.49 (14)
С8—С9—Н9В	108.8	C12—C22—C23	121.95 (14)
С10—С9—Н9В	108.8	C28—C23—C24	118.10 (16)
Н9А—С9—Н9В	107.7	C28—C23—C22	121.24 (15)
C11—C10—C9	111.40 (14)	C24—C23—C22	120.66 (16)
C11-C10-H10A	109.3	C25—C24—C23	121.08 (17)
C9—C10—H10A	109.3	C25—C24—H24A	119.5
C11—C10—H10B	109.3	C23—C24—H24A	119.5
C9—C10—H10B	109.3	C26—C25—C24	119.17 (17)
H10A-C10-H10B	108.0	C26—C25—H25A	120.4
C12—C11—C10	108.64 (14)	C24—C25—H25A	120.4
C12—C11—H11A	110.0	C27—C26—C25	121.19 (17)
C10-C11-H11A	110.0	C27—C26—Cl2	118.83 (15)
C12-C11-H11B	110.0	C25—C26—Cl2	119.95 (15)
C10-C11-H11B	110.0	C26—C27—C28	119.02 (17)
H11A-C11-H11B	108.3	C26—C27—H27A	120.5
C22—C12—C13	117.77 (14)	C28—C27—H27A	120.5
C22—C12—C11	123.25 (14)	C23—C28—C27	121.37 (16)
C13—C12—C11	118.81 (14)	C23—C28—H28A	119.3
N1—C13—C12	122.92 (14)	C27—C28—H28A	119.3

Hydrogen-hond	geometry	(Å.	°)
ilyulogen bonu	geometry	(11)	

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
C7—H7A…N1	0.93	2.34	2.760 (2)	107
C20—H20A···Cl1 ⁱ	0.93	2.80	3.476 (2)	130
Symmetry codes: (i) $x-1$, y , $z+1$.				

Fig. 1